Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1233: 340490, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283780

RESUMO

Glucuronidation is a common phase II metabolic process for drugs and xenobiotics which increases their solubility for excretion. Acyl glucuronides (glucuronides of carboxylic acids) present concerns as they have been implicated in gastrointestinal toxicity and hepatic failure. Despite the substantial success in the bulk analysis of these species, previous attempts using traditional mass spectrometry imaging (MSI) techniques have completely or partially failed and therefore little is known about their localization in tissues. Herein, we use nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI), an ambient liquid extraction-based ionization technique, as a viable alternative to other MSI techniques to examine the localization of diclofenac, a widely used nonsteroidal anti-inflammatory drug, and its metabolites in mouse kidney and liver tissues. MSI data acquired over a broad m/z range showed low signals of the drug and its metabolites resulting from the low ionization efficiency and substantial signal suppression on the tissue. Significant improvements in the signal-to-noise were obtained using selected ion monitoring (SIM) with m/z windows centered around the low-abundance ions of interest. Using nano-DESI MSI in SIM mode, we observed that diclofenac acyl glucuronide and hydroxydiclofenac are localized to the inner medulla and cortex of the kidney, respectively, which is consistent with the previously reported localization of enzymes that process diclofenac into its respective metabolites. In contrast, a uniform distribution of diclofenac and its metabolites was observed in the liver tissue. Concentration ratios of diclofenac and hydroxydiclofenac calculated from nano-DESI MSI data are generally in agreement to those obtained using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Collectively, our results demonstrate that nano-DESI MSI can be successfully used to image diclofenac and its primary metabolites and derive relative quantitative data from different tissue regions. Our approach will enable a better understanding of metabolic processes associated with diclofenac and other drugs that are difficult to analyze using commercially available MSI platforms.


Assuntos
Diclofenaco , Espectrometria de Massas por Ionização por Electrospray , Animais , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Íons , Anti-Inflamatórios
2.
Sci Rep ; 11(1): 24093, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916525

RESUMO

Confined volume systems, such as microdroplets, Leidenfrost droplets, or thin films, can accelerate chemical reactions. Acceleration occurs due to the evaporation of solvent, the increase in reactant concentration, and the higher surface-to-volume ratios amongst other phenomena. Performing reactions in confined volume systems derived from mass spectrometry ionization sources or Leidenfrost droplets allows for reaction conditions to be changed quickly for rapid screening in a time efficient and cost-saving manner. Compared to solution phase reactions, confined volume systems also reduce waste by screening reaction conditions in smaller volumes prior to scaling. Herein, the condensation of glyoxal with benzylamine (BA) to form hexabenzylhexaazaisowurtzitane (HBIW), an intermediate to the highly desired energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), was explored. Five confined volume systems were compared to evaluate which technique was ideal for forming this complex cage structure. Substituted amines were also explored as BA replacements to screen alternative cage structure intermediates and evaluate how these accelerated techniques could apply to novel reactions, discover alternative reagents to form the cage compound, and improve synthetic routes for the preparation of CL-20. Ultimately, reaction acceleration is ideal for predicting the success of novel reactions prior to scaling up and determining if the expected products form, all while saving time and reducing costs. Acceleration factors and conversion ratios for each reaction were assessed by comparing the amount of product formed to the traditional bulk solution phase synthesis.

3.
Analyst ; 146(10): 3127-3136, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33999086

RESUMO

Chemical warfare agents (CWAs) are toxic chemicals that have been used as disabling or lethal weapons in war, terrorist attacks, and assasinations. The Chemical Weapons Convention (CWC) has prohibited the use, development, production, and stockpiling of CWAs since its initiation in 1997, however, the threat of deployment still looms. Detection of trace CWAs post-deployment or post-remediation, in bulk matrices such as soil, often requires lengthy sample preparation steps or extensive chromatographic separation times. 3D-printed cone spray ionization (3D-PCSI), an ambient ionization mass spectrometric (MS) technique, provides a rapid, simple, and low-cost method for trace CWA analysis in soil matrices for both in-laboratory and in-field detection. Described here is the utilization of conductive 3D-printed cones to perform both rapid sampling and ionization for CWA simulants and hydrolysis products in eight solid matrices. The analysis of trace quantities of CWA simulants and hydrolysis products by 3D-PCSI-MS coupled to both a commercial benchtop system and a field-portable MS system is detailed. Empirical limits of detection (LOD) for CWA simulants on the benchtop MS ranged from 100 ppt to 750 ppb and were highly dependant on solid matrix composition, with the portable system yielding similar spectral data from alike matrices, albeit with lower sensitivity.

4.
Anal Chem ; 93(7): 3477-3485, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33570915

RESUMO

Spatial segmentation partitions mass spectrometry imaging (MSI) data into distinct regions, providing a concise visualization of the vast amount of data and identifying regions of interest (ROIs) for downstream statistical analysis. Unsupervised approaches are particularly attractive, as they may be used to discover the underlying subpopulations present in the high-dimensional MSI data without prior knowledge of the properties of the sample. Herein, we introduce an unsupervised spatial segmentation approach, which combines multivariate clustering and univariate thresholding to generate comprehensive spatial segmentation maps of the MSI data. This approach combines matrix factorization and manifold learning to enable high-quality image segmentation without an extensive hyperparameter search. In parallel, some ion images inadequately represented in the multivariate analysis were treated using univariate thresholding to generate complementary spatial segments. The final spatial segmentation map was assembled from segment candidates that were generated using both techniques. We demonstrate the performance and robustness of this approach for two MSI data sets of mouse uterine and kidney tissue sections that were acquired with different spatial resolutions. The resulting segmentation maps are easy to interpret and project onto the known anatomical regions of the tissue.


Assuntos
Diagnóstico por Imagem , Rim , Animais , Análise por Conglomerados , Espectrometria de Massas , Camundongos , Análise Multivariada
5.
Chemosphere ; 272: 129708, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534952

RESUMO

A rapid method to empirically determine the presence of trace per- and polyfluoroalkyl substances (PFAS) in solid media, such as soils, sands, and sediments, without any sample preparation, through ambient ionization mass spectrometry (MS), is described. 3D-printed cone spray ionization (3D-PCSI) is an ambient ionization technique that employs a 3D-printed conductive plastic cone to perform both sampling and ionization. The 3D-PCSI sources are fabricated in the shape of a hollowed square pyramid to hold bulk matrices, and consist of rigid walls to aid in the uniformity and consistency of sampling and ionization. Solid samples are placed within the hollowed pyramid and a solvent is added to perform an in-situ extraction, followed by spray-based ionization when a voltage is applied. The low cost of 3D-printing, its reproducibility at scale, and lack of sample preparation, enables 3D-PCSI-MS to rapidly and efficiently screen for trace PFAS, in-situ, in bulk samples. Demonstrated here is the detection of trace PFAS that were doped into six different soil and sediment matrices, by 3D-PCSI-MS, to validate the universality of the method, irrespective of matrix composition. All PFAS were identified by their indicative MS3 spectra and ranged in detection limits from 100 ppt to 10 ppb depending on the compound and soil classification. Legacy aqueous film forming foams (AFFF) were analyzed in soil by 3D-PCSI-MS, as were soil samples collected around an AFFF testing facility. The sampling rate for 3D-PCSI-MS was less than 2 min per sample, demonstrating the applicability to high-throughput mapping of a contaminated area.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Espectrometria de Massas , Impressão Tridimensional , Reprodutibilidade dos Testes , Solo , Água/análise , Poluentes Químicos da Água/análise
6.
Anal Methods ; 12(32): 3974-3997, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720670

RESUMO

Mass spectrometry (MS) techniques are highly prevalent in crime laboratories, particularly those coupled to chromatographic separations like gas chromatography (GC) and liquid chromatography (LC). These methods are considered "gold standard" analytical techniques for forensic analysis and have been extensively validated for producing prosecutorial evidentiary data. However, factors such as growing evidence backlogs and problematic evidence types (e.g., novel psychoactive substance (NPS) classes) have exposed limitations of these stalwart techniques. This critical review serves to delineate the current role of MS methods across the broad sub-disciplines of forensic science, providing insight on how governmental steering committees guide their implementation. Novel, developing techniques that seek to broaden applicability and enhance performance will also be highlighted, from unique modifications to traditional hyphenated MS methods to the newer "ambient" MS techniques that show promise for forensic analysis, but need further validation before incorporation into routine forensic workflows. This review also expounds on how recent improvements to MS instrumental design, scan modes, and data processing could cause a paradigm shift in how the future forensic practitioner collects and processes target evidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...